Haskell Programming Assignment: Various Computations

Learning Abstract

This assignment is the only assignment on Haskell and it features programming exercises that focus on functions, recursive list processing, list comprehensions, and higher order functions in Haskell.

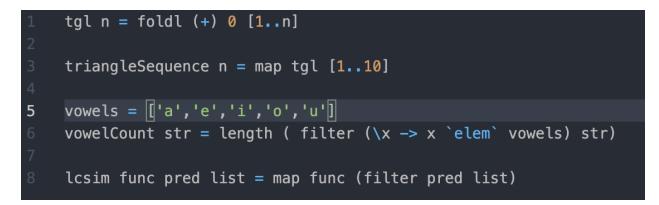
Task 1: Mindfully mimicking the demo

```
GHCi, version 9.2.5: https://www.haskell.org/ghc/ :? for hel
ghci> :set prompt ":"
::set prompt ">>>"
>>>length [2,3,5,7]
>>words "need more coffee"
["need","more","coffee"]
>>>unwords ["need", "more", "coffee"]
"need more coffee"
>>>reverse "need more coffee"
"eeffoc erom deen"
>>reverse ["need", "more", "coffee"]
["coffee","more", "need"]
>>>:set prompt ">>> "
>>> head ["need', "more", "coffee"]
<interactive>:9:32: error:
lexical error in string/character literal at end of input
>>> head ["need", "more", "coffee"]
"need"
>>> tail ["need", "more", "coffee"]
["more","coffee"]
>>> last ["need", "more", "coffee"]

"coffee"
>>> init ["need", "more", "coffee"]
["need", "more"]
>>> take 7 "need more coffee"
"need mo"
>>> drop 7 "need more coffee"
"re coffee"
>>> ( x \rightarrow \text{length } x > 5 ) "Friday"
True
>>> ( x \rightarrow length x > 5 ) "uhoh"
False
>>> ( \x -> x /= ' ' ) 'Q'
<interactive>:18:15: error: lexical error at character ' '
>>> (\x -> x /= ' ') 'Q'
True
>>> (\x -> x /= ' ') ' '
False
>>> filter (\x -> x /= ' ') "is Haskell fun yet?"
"isHaskellfunyet?"
>>> :quit
Leaving GHCi.
aaradhyaacharya@Aaradhyas-MacBook-Air haskell %
```

ghci> squareArea 10 100
ghci> squareArea 12 144
ghci> circleArea 10 314.1592653589793
ghci> blueAreaofCube 10 482.19027549038276
ghci> blueAreaOfCube 12
<pre><interactive>:6:1: error:</interactive></pre>
ghci> map blueAreaofCube [13]
<pre><interactive>:8:22: error: Variable not in scope: () :: t0 -> t1 -> b</interactive></pre>
ghci> map blueAreaofCube [13] [4.821902754903828,19.287611019615312,43.39712479413445]
ghci> paintedCubel 1 0
ghci> paintedCube1 1 0 bbci: scientedCube1 2
ghci> paintedCube1 3 6 bbci and paintedCube1 [1] 20]
ghci> map paintedCube1 [110] [0,0,6,24,54,96,150,216,294,384] ghci> paintedCube2 1 0
ghci> paintedCube2 2 0
ghci> paintedCube2 13 156
ghci> map paintedCube2 [110] [0,0,36,48,60,72,84,96,108,120] ghci> :quit
Leaving GHCi. aaradhyaacharya@Aaradhyas-MacBook-Air haskell %

Task 3: Puzzlers


```
reverseWords wordString = unwords ( reverse (words wordString))
   averageWordLength wordString =
      (fromIntegral ( sum (map length (wordList)))) / (fromIntegral (length wordList))
      where wordList = words wordString
ghci> :load task3.hs
                                        ( task3.hs, interpreted )
[1 of 1] Compiling Main
Ok, one module loaded.
ghci> reverseWords "appa and baby yoda are the best"
"best the are yoda baby and appa"
ghci> reverseWords "want me some coffee"
"coffee some me want"
ghci> averageWordLength "appa and baby yoda are the best"
3.5714285714285716
ghci> averageWordLength "want me some coffee"
4.0
ghci> :quit
Leaving GHCi.
aaradhyaacharya@Aaradhyas-MacBook-Air haskell %
```

```
list2set[] = []
list2set (x:xs) =
   if (x `elem` xs)
       then list2set xs
   else x:list2set xs
isPalindrome [] = True
isPalindrome [x] = True
isPalindrome (x:xs) =
   if (x == last xs)
       then isPalindrome(init xs)
   else False
collatz 1 = [1]
collatz x =
   if (odd x)
       then x : collatz (3*x + 1)
       else x : collatz (div x 2)
ghci> :load task4.hs
                                      ( task4.hs, interpreted )
[1 of 1] Compiling Main
Ok, one module loaded.
ghci> collatz 10
[10,5,16,8,4,2,1]
ghci> collatz 11
[11,34,17,52,26,13,40,20,10,5,16,8,4,2,1]
ghci> collatz 100
[100,50,25,76,38,19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1]
ghci> list2set [1,2,3,2,3,4,3,4,5]
[1,2,3,4,5]
ghci> list2set "need more coffee"
"ndmr cofe"
ghci> isPalindrome ["coffee","latte","coffee"]
True
ghci> isPalindrome ["coffee","latte","espresso","coffee"]
False
ghci> isPalindrome [1,2,5,7,11,13,11,7,5,3,2]
False
ghci> isPalindrome [2,3,5,7,11,13,11,7,5,3,2]
True
ghci>
```

Task 5: List Comprehensions

```
1 count obj li = sum [if obj == x then 1 else 0 | x <- li]
2
3 freqTable li = [(x, count x li) | x <- list2set li]
ghci> count 'e' "need more coffee"
5
ghci> count 4 [1,2,3,2,3,4,3,4,5,4,5,6]
3
ghci> freqTable "need more coffee"
[('n',1),('d',1),('m',1),('r',1),(' ',2),('c',1),('o',2),('f',2),('e',5)]
ghci> freqTable [1,2,3,2,3,4,3,4,5,4,5,6]
[(1,1),(2,2),(3,3),(4,3),(5,2),(6,1)]
ghci> :quit
Leaving GHCi.
```

Task 6: Higher Order Functions


```
ghci> tgl 5
15
ghci> tgl 10
55
ghci> triangleSequence 10
[1,3,6,10,15,21,28,36,45,55]
ghci> triangleSequence 20
[1,3,6,10,15,21,28,36,45,55]
ghci> vowelCount "cat"
1
ghci> vowelCount "mouse"
3
ghci> lcsim tgl odd [1..15]
[1,6,15,28,45,66,91,120]
ghci> animals = ["elephant","lion","tiger","orangatan","jaguar"]
ghci> lcsim length (\w -> elem ( head w ) "aeiou") animals
[8,9]
ghci>
```

Task 7: An Interesting Statistic, nPVI

```
pairwiseValues :: [Int] -> [(Int,Int)]
     pairwiseValues li = zip li (tail li)
     pairwiseDifferences :: [Int] -> [Int]
     pairwiseDifferences li = map ((x,y) \rightarrow x - y) (pairwiseValues li)
19
     pairwiseSums :: [Int] -> [Int]
     pairwiseSums li = map ((x,y) \rightarrow x + y) (pairwiseValues li)
     half :: Int -> Double
     half number = ( fromIntegral number ) / 2
     pairwiseHalves :: [Int] -> [Double]
     pairwiseHalves xs = map half xs
     pairwiseHalfSums :: [Int] -> [Double]
     pairwiseHalfSums li = pairwiseHalves (pairwiseSums li)
     pairwiseTermPairs :: [Int] -> [(Int,Double)]
     pairwiseTermPairs li = zip (pairwiseDifferences li) (pairwiseHalfSums li)
     term :: (Int,Double) -> Double
     term ndPair = abs ( fromIntegral ( fst ndPair ) / ( snd ndPair ) )
     pairwiseTerms :: [Int] -> [Double]
     pairwiseTerms li = map term (pairwiseTermPairs li)
     nPVI :: [Int] -> Double
     nPVI xs = normalizer xs * sum ( pairwiseTerms xs )
         where normalizer xs = 100 / fromIntegral ( (length xs ) - 1 )
```

7b

>>> pairwiseValues a
[(2,5),(5,1),(1,3)]
>>> pairwiseValues b
[(1,3),(3,6),(6,2),(2,5)]
>>> pairwiseValues c
[(4,4),(4,2),(2,1),(1,1),(1,2),(2,2),(2,4),(4,4),(4,8)]
>>> pairwiseValues u
[(2,2),(2,2),(2,2),(2,2),(2,2),(2,2),(2,2),(2,2),(2,2)]
>>> pairwiseValues x
[(1,9),(9,2),(2,8),(8,3),(3,7),(7,2),(2,8),(8,1),(1,9)]
>>>

7**c**

>>> pairwiseDifferences a
[-3,4,-2]
>>> pairwiseDifferences b
[-2,-3,4,-3]
>>> pairwiseDifferences c
[0,2,1,0,-1,0,-2,0,-4]
>>> pairwiseDifferences u
[0,0,0,0,0,0,0,0,0]
>>> pairwiseDifferences x
[-8,7,-6,5,-4,5,-6,7,-8]

7d

```
>>> pairwiseSums a
[7,6,4]
>>> pairwiseSums b
[4,9,8,7]
>>> pairwiseSums c
[8,6,3,2,3,4,6,8,12]
>>> pairwiseSums u
[4,4,4,4,4,4,4,4,4]
>>>
>>> pairwiseSums x
[10,11,10,11,10,9,10,9,10]
```

7e

1

>>> pairwiseHalves [110]	
[0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0]	
>>> pairwiseHalves u	
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,	
>>> pairwiseHalves x	
[0.5,4.5,1.0,4.0,1.5,3.5,1.0,4.0,0.5,4.5]	
[0.5 <u>,</u> 4.5,1.0,4.0,1.5,3.5,1.0,4.0,0.5,4.5]	

7f

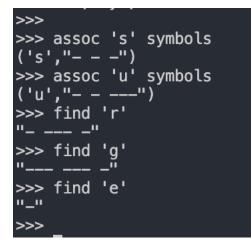
>>> pairwiseHalfSums a
[3.5,3.0,2.0]
>>> pairwiseHalfSums b
[2.0,4.5,4.0,3.5]
>>> pairwiseHalfSums c
[4.0,3.0,1.5,1.0,1.5,2.0,3.0,4.0,6.0]
>>> pairwiseHalfSums u
[2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0]
>>> pairwiseHalfSums x
[5.0 <u>,</u> 5.5,5.0,5.5,5.0,4.5,5.0,4.5,5.0]

7g

>>>
>>> pairwiseTermPairs a
[(-3,3.5),(4,3.0),(-2,2.0)]
>>> pairwiseTermPairs b
[(-2,2.0),(-3,4.5),(4,4.0),(-3,3.5)]
>>> pairwiseTermPairs c
[(0,4.0),(2,3.0),(1,1.5),(0,1.0),(-1,1.5),(0,2.0),(-2,3.0),(0,4.0),(-4,6.0)]
>>> pairwiseTermPairs u
[(0,2.0),(0,2.0),(0,2.0),(0,2.0),(0,2.0),(0,2.0),(0,2.0),(0,2.0)]
>>> pairwiseTermPairs x
[(-8,5.0),(7,5.5),(-6,5.0),(5,5.5),(-4,5.0),(5,4.5),(-6,5.0),(7,4.5),(-8,5.0)]
>>>

7h

7i


>>> nPVI a 106.34920634920636 >>> nPVI b 88.09523809523809 >>> nPVI c 37.03703703703703 >>> nPVI u 0.0 >>> nPVI x 124.98316498316497 >>>

Task 8- Historic Code: The Dit Dah Code

8a

8b

8c

>>> addletter "a" "b"
"a b"
>>> addword "baked" "potato"
"baked potato"
>>> droplast3 "optimus prime"
"optimus pr"
>>> droplast7 "optimus prime"
"optimu"
>>>
