
CSC 344 – Memory Management/Perspectives on Rust by Aaradhya Acharya

Task 1 : The Memory Stack and the Heap

 The concepts of runtime stack and heap are both very important ones that every budding
programmer needs to know about. Both the runtime stack and heap are methods of memory
management used by various programming languages.

 The first concept is that of a runtime stack. When a program is executed, a stack is made to
keep a track of everything that happens. A Runtime Stack deals with the temporary allocation of
memory within a system. When a program is run, the compiler allocates some memory within the
system for that program to use. Everything defined on a stack can only be defined by the following
stack and stacks cannot be resized hence the data must have a definite length. There are three ways
stacks can be implemented: arrays, dynamic memory, and linked lists. Stacks are small and do not
take up a lot of data, which makes them fast and ideal for smaller programs.

 The second concept is that of a heap. A heap is essentially a less organized form of a runtime
stack. When something is put on a heap, a certain amount of memory is allocated for it and a
pointer gets returned, which “points” to the location the associated data is stored in. Heaps can
store a lot more data than stacks, but this also makes them run a lot slower than a stack. Heaps also
do not deallocate their own memory, so it is very important to keep in mind when a heap is being
designed in order to avoid situations of memory leak, dangling pointers, or having situations of
double free bugs.

Task 2 : Explicit Memory Allocation/Deallocation vs. Garbage Collection

 Memory is finite, there’s only so much of it that can go around even in the beefiest of
computer systems. Memory management is using the finite resource of memory as efficiently as
possible. There are two main methods of memory management: (i)explicitly allocating and
deallocating memory, and (ii)garbage collection. Both of these methods of memory management will
be discussed in the next two paragraphs.

 Languages like C/C++ are considered to be low-level of languages which require explicit
memory allocation and deallocation. It is entirely up to the programmer on how the memory of the
system is managed. The programmer would need to delete the memory manually as it is not
automatically freed by the compiler with deallocation and the opposite would need to be done for
allocation. This gives the programmer more control, but if not careful, memory can be eaten up and
issues such as memory leaks can occur.

 Garbage collection is a memory recovery feature generally present in higher level languages
such as Java and Python. Garbage collectors automatically free up memory space allocated to objects
that are no longer needed. First, the compiler allocates memory for the program to use, then once
the program is finished the garbage collector comes in and deallocates the memory used by the

program automatically. It is, however, slower than explicitly doing so, as it takes time for the garbage
collector to process and do its job. This is why it’s not typically used in lower-level languages.

Task 3: Rust – Memory Management

- In Rust, we do allocate memory and de-allocate memory at specific points in our program.
Thus it doesn't have garbage collection, as Haskell does.

- Heap memory always has one owner, and once that owner goes out of scope, the memory

gets de-allocated.

- We don't need to call delete as we would in C++. We define memory cleanup for an object
by declaring the drop function.

- In Rust, you can copy primitive types. But if you change the copy, the original will not

change and vise versa. It’s also just better to use the clone function.

- We declare variables within a certain scope, like a for-loop or a function definition. When
that block of code ends, the variable is out of scope. We can no longer access it.

- Like in C++, we can pass a variable by reference. We use the ampersand operator (&) for

this. It allows another function to "borrow" ownership, rather than "taking" ownership.
When it's done, the original reference will still be valid.

- Rust uses the idea of ownership in memory. This means that memory can only have one

owner.

- Rust is a performance-oriented language.

Task 4: Paper Review – Secure PL Adoption and Rust

Rust is an open-source systems programming language created by Mozilla, with its first
stable release in 2014. It is a multi-paradigm language, with elements drawn from functional,
imperative, and object-oriented languages. Rust does not use garbage collection, but the way
ownership works in it is effective.

Rust was developed to combat memory and safety related vulnerabilities in a simple yet
effective manner compared to the complex new languages. Based on the information gathered from
surveys, companies that have implemented Rust as or senior software developers that had worked it
reported mostly positive things. A key benefit mentioned by participants is that once Rust code
compiles, developers can be fairly confident that the code is safe and correct. Also, while the initial
time to design and develop a solution in Rust is sometimes long and/or hard to estimate due to
unforeseen conflicts with the borrow checker, interview participants felt — and survey participants

agreed or strongly agreed — that Rust reduced development time overall, from the start of a project
to shipping it, compared to other languages they were comfortable with. Most participants also
reported that Rust has had at least a minor positive effect on their development in another language
they’re comfortable with.

However, Rust isn’t all just sunshine and rainbows. The difficulty of learning Rust was

among the biggest concerns participants encountered at their companies Many participants cited
unfamiliarity with Rust as one reason people were worried about adopting or did not adopt Rust at
their company. Any change to an unfamiliar language could create uncertainty or apprehension.
Since Rust is relatively new, some participants cited company concerns about the maturity and
maintenance of its tooling and ecosystem, as well as whether it would be around long-term. Like
with most things, Rusts has its own pros and cons but there is a bright future ahead for Rust as a
programming language and it wouldn’t be too bad of an idea for new programmers to maybe look
into it at some point down the road in their career path.

