Racket Programming Assignment# 3: Lambda and Basic Lisp

Learning Abstract

This assignment features programs in Lisp. The first two tasks are highly constrained. One of these
pertains to lambda functions, and the other to basic list processing operations in Lisp. The second
two tasks, which are considerably more involved extend programs that are presented in Lesson 6
“Basic Lisp Programming”.

Task 1a: Three Ascending Integers

> (define (asc n)
(cons n (cons (+ n1) (cons (+n2) '())))
)

> (asc 5)

'{5 6 7]

> (asc 0)

(0 1 2)

> (asc 108)

'(108 109 110)

Task 1b: Make list in reverse order

> (define (mlr x y z)
(cons z (cons y (cons x '())))
)
> (mlr 'red 'yellow 'blue)
'(blue yellow red)
> (mlr 10 20 30)
'(30 20 10)
> (mlr "Professor Plum" "Colonel Mustard" "Miss Scarlet")
'(fMiss Scarlet" "Colonel Mustard" "Professor Plum")

Task 1c: Random Number Generator

> (define (rn x y)
(list-ref (cons x(cons y '())) (random 2))
{r; 3.5
(g o
(rn 3 5)
(rn 3 5)
(rn 3 5)
Erii 35)
prre 3 5)
(rn 3 5)
frn 3 5)

{rnl 3'.5)

Vwyvyuyvuwmyvwyuwmyvuwmy wyvuwmy wyv wy

trn 11 17)
= vk 3% 371
x rm 11 17)
> K 31 A7)
x Lrn 11 17)
= {ro 11 17)
w drm 14 37)
> {ro 11 17)
> Lrm 11 17)

= 'rh 11 17)

Task 2: List Processing Referencers and Constructors

Definitions:

#lang racket

(define colors '(red blue yellow orange))
(define key-of-c '(c d e))

(define key-of-g '(g a b))

(define pitches '(do re mi fa so la ti))
(define a 'alligator)

(define b 'pussycat)

(define ¢ 'chimpanzee)

(define x '(1 one))

(define y '(2 two))

=
aswmqmmhwwu

Demos:

> colors

'(red blue yellow orange)
> 'colors

‘colors

> (quote colors)
‘colors

> (car colors)

'‘red

> (cdr colors)

'(blue yellow orange)
> (car (cdr colors))
'blue

> (cdr (cdr colors))
'(yellow orange)

> (cadr colors)

'blue

> (cddr colors)
'(yellow orange)

> (first colors)

'‘red

> (second colors)
'blue

> (third colors)
‘yellow

> (list-ref colors 2)
‘yellow

>

> (cons key-of-c key-of-g)
'((c d e) gahb)

> (list key-of-c key-of-g)
‘((c de) (gab))

> (append key-of-c key-of-g)
'(cdegab)

>

> (cons key-of-c key-of-g)
'((c de) gab)

> (list key-of-c key-of-g)
'((c de) (gab))

> (append key-of-c key-of-g)
'(cdegab)

>

> (car (cdr (cdr (cdr animals))))

% @ animals: undefined;

cannot reference an identifier before its definition
> (car (cdr (cdr (cdr pitches))))
'fa
> (cadddr pitches)
'fa
> (list-ref pitches 3)
'fa
> |

> (cons a (cons b(cons ¢ '())))
'(alligator pussycat chimpanzee)
» {lista b c)

'(ﬁlligator pussycat chimpanzee)
>

> (cons (car x) (cons (car(cdr x)) y))
'(1 one 2 two)

> (append x y)

'(1 one 2 two)

> |

Task 3a: Establishing the Sampler code

Code:

#lang racket
(define (sampler)
(display "(?): ")
(define the-list (read))
(define the-element
(list-ref the-list (random (length the-list)))
)
(display the-element) (display "\n")
(sampler)

Demo:

> (sampler)
(?): (lion cat dog rat monkey elephant)

rat

(?7): (lion cat dog rat monkey elephant)
monkey

(?): (lion cat dog rat monkey elephant)
elephant

(?): (lion cat dog rat monkey elephant)
dog

(?7): (lion cat dog rat monkey elephant)
rat

(?): (lion cat dog rat monkey elephant)
cat

(?): (lion cat dog rat monkey elephant)
lion

(?): (lion cat dog rat monkey elephant)
lion

(?): (aet ate eat eta tae tea)

eat

(?): (aet ate eat eta tae tea)

eat

(7): (aet ate eat eta tae tea)

ate

(?): (aet ate eat eta tae tea)

ate

(7): (@0123456789)

9

(?): (0123456789

2
(?): (0123456789

Task 3b: Color Thing Interpreter

1| #lang racket
2 | (require 2htdp/image)
3| (define (color-thing)
4 { display™{T]l="™)
5 (define input (read))
6 (define command (car input))
7 (define list (cadr input))
8 (cond
9 (
10 (eq? command 'random)
11 (define the-element (list-ref list (random (length list))))
12 (color-block the-element)
13)
14 (
15 (eq? command 'all)
16 (all-colors list)
17)
18 (
19 else
(color-block (list-ref list (- command 1)))
21)
22)
23 (color-thing)
24 |)
25
26 | (define (all-colors list)
27 (cond
28 (
29 (= (length list) 0)
30 (display "")
31
32 (
33 else
34 (color-block (car list))
35 (all-colors (cdr list))
36)
37)
38|)
39
40 | (define (color-block color)
41 (display (rectangle 500 25 'solid color))
42 (display "\n")
43 |)

Welcome to DrRacket, version 8.6 [cs].
Language: racket, with debugging; memory limit: 256 MB.

> (color-thing)
(?): (random (olivedrab dodgerblue indigo teal plum darkorange))

(?): (random (olivedrab dodgerblue indigo teal plum darkorange))

(?): (random (olivedrab dodgerblue indigo teal plum darkorange))

(?): (all (olivedrab dodgerblue indigo teal plum darkorange))

(7): (1 (olivedrab dodgerblue indigo teal plum darkorange))

(7): (3 (olivedrab dodgerblue indigo teal plum darkorange))

(?): (5 (olivedrab dodgerblue indigo teal plum darkorange))

Task 4a: Establishing the Card code

E=0= R = LT R S PV N

#lang racket

(define {ranks rank)

(list
(list rank 'C)
(list rank 'D)
(list rank 'H)
(list rank 'S)
)

)

(define (deck)

(append
(ranks 2)
(ranks 3)
(ranks 4)
(ranks 5)
(ranks &)
(ranks 7)
(ranks 8)
(ranks 9)
(ranks 'X)
(ranks '1)
(ranks 'Q)
(ranks 'K)
(ranks 'A)
)

)

(define (pick-a-card)
(define cards (deck))
(list-ref cards (random (length cards)))
)

(define {show card)
(display (rank card))
(display (suit card))
)

(define (rank card)
(car card)

)

(define (suit card)
(cadr card)

)

(define (red? card)
(or
(equal? (suit card) 'D)
(equal? (suit card) 'H)
)
)

(define (black? card)
(not (red? card))
)

(define {aces? cardl card2)
(and
{equal? (rank cardl) "A)
(equal? (rank card2) 'A)
)
)

Welcome to DrRacket, version 8.6 [cs].
Language: racket, with debugging; memory limit: 256 MB.
> (define c1 '(7 C))

> (define c2 '(Q H))

= cl

"7)

= c2

‘(0 H)

= (rank c1)

7

= (suit c1)

'C

= (rank c2)

‘0

= (suit c2)

'H

= (red? c1)
#f
= (red? c2)

#t

> (black? c1)
#t

> (black? c2)

#f

= (aces? '(A C) ('A S))

5: undefined;
cannot reference an Identifier before its definition
> (aces? (A C) '(A S))

A: undefined;
cannot reference an Identifier before its definition
> (aces? '(A C) '(A S))
#t
= (aces? '(K 5) '(K C))
#T
= (ranks 4)
‘({4 C) (4 D) (4 H) (45))
> (ranks 'K)
'((K C) (KD) (K H) (KS))
> (length (deck))
52
> (display (deck))
({2 C) (2D) (2H) (25) (3C) (3D) (3H) (35) (4C) (4D) (4H) {(45) (5¢C) (50) (5H) (55) (6C) (6D) (6H) (65) (7C) 2
(7D) (FH) (7S) (BC) (BD) (BH) (B8S) (9C) (9D) (9H) (35) (XC)(XD) (XH) (XS)(2C) (D) (JH) (3S)(QC) QD) @2
(Q H) (O 5) (KC) (KD} (KH) (KS) (AC) (AD) (AH) (AS))
> (pick-a-card)
'(J H)
> (pick-a-card)
‘o Q)
> (pick-a-card)
'(3s)
> (pick-a-card)
'(JH)
> (pick-a-card)
'(X H)
> (pick-a-card)
(X H)

>|

Task 4b: Establishing the Card code

(define (pick-two-cards)
(define testl (pick-a-card))
(define test2 (pick-a-card))
{ cond

{
(equal? testl test2)
(pick-two-cards)

)

{ {list testl test2))

)

}

(define (higher-rank cardl card2)
(define order '(2 3 456 789 XJQKA))
(define rankl (car cardl))
(define rank2 (car card2))
(define compare-rank (— (index—of order rankl) (index—of order rank2)))
{ cond
{ {> compare-rank @) rankl)
{ (<= compare-rank @) rank2)
]
)

s(trace higher-rank)

(define (classify-two-cards—ur cards)
(display cards)
(display ": ")

(define c1 (car cards))
(define ¢2 (cadr cards))

(define high-rank (higher-rank cl c2))
(display high-rank)

(define flush? (eq? (cadr cl) (cadr c2)))
(define pair? (eq? (car c1) (car c2))}

(define rank-order '{2 3 4567 89 XJ0QKA))
(define straight?
(or
(= (+ (index-of rank-order (car c1) } 1) (index—of rank-order (car c2)) }
(= { = {index—of rank-order (car cl)) 1)} (index—of rank-order (car c2)))
)
)

{cond
(pair? (display " pair")})
(else (display " high"))
]

(cond (straight? (display " straight")))
(cond (flush? (display " flush"™})))

Laliyuaysc. IaunGl, will UsuwuL
> (pick—two-cards)
"{i9 8] 3 5))

> (pick-two-cards)
'"((K H) (K D))

> (pick-two-cards)
"((A C) (QH))

> (pick-two-cards)
"{{X C] (A 5))

> (pick-two-cards)
{49 Hl (3 H))

> |

> (higher-rank (pick-a-card)
>(higher-rank '(9 S) '(A H))
<'A

'A

> (higher-rank (pick-a-card)
>(higher-rank '(J C) '(3 S))
<]

'

> (higher-rank (pick-a-card)
>(higher-rank '(5 H) '(A C))
<'A

'A

> (higher-rank (pick-a-card)
>(higher-rank '(5 S) '(J D))
<']

'J

> (higher-rank (pick-a-card)
>(higher-rank '(6 D) '(X S))
< "X

'X

> (higher-rank (pick-a-card)
>(higher-rank '(3 S) '(7 H))
<7

7

>

(pick-a-card))

(pick-a-card))

(pick-a-card))

(pick-a-card))

(pick-a-card))

(pick-a-card))

> (classify-two-cards—-ur (pick-two-cards))
((AD) (3D)): A high flush

> (classify-two-cards—-ur (pick-two-cards))
((9 D) (3 D)): J high flush

> (classify-two-cards—-ur (pick-two-cards))
((X S) (9 C)): X high straight

> (classify-two-cards-ur (pick-two-cards))
((7 D) (9 C)): 9 high

> (classify-two-cards-ur (pick-two-cards))
((AS) (KS)): A high straight flush

> (classify-two-cards-ur (pick-two-cards))
((9 H) (7 C)): 9 high

> (classify-two-cards-ur (pick-two-cards))
({2 5} (6 €]): G high

> (classify-two-cards-ur (pick-two-cards))
((2'S) (8 S)): 8 high flush

> (classify-two-cards-ur (pick-two-cards))
((5 H) (5 §)1)= 5 pair

> (classify-two-cards—-ur (pick-two-cards))
{13 8) (2 H)Y): d KWigh

> (classify-two-cards-ur (pick-two-cards))
((K C) (6 C)): K high flush

> (classify-two-cards-ur (pick-two-cards))
((Q C) (9 S)): Q high

> (classify-two-cards-ur (pick-two-cards))
((4 D) (4 S)): 4 pair

> (classify-two-cards-ur (pick-two-cards))
((K C) (7 H)): K high

> (classify-two-cards-ur (pick-two-cards))
((Q H) (7 S)): Q high

> (classify-two-cards-ur (pick-two-cards))
((4 S) (Q H)): Q high

> (classify-two-cards-ur (pick-two-cards))
((6 S) (K C)): K high

> (classify-two-cards-ur (pick-two-cards))
((3'S) (7 S)): I high flush

> (classify-two-cards-ur (pick-two-cards))
({6 S) (BC)): 8 high

> (classify-two-cards-ur (pick-two-cards))
((2 C) (5C)): 5 high flush

>

Task 4c: Two Card Poker Classifier

(define (classify—two—-cards cards)
(display cards)
(display ": ")

(define rank-order '(2 3456 789X JQKA))
(define rank-name-parallel '(two three four five six seven eight nine ten jack queen king ace))

(define cardl (car cards))
(define card2 (cadr cards))

(define high-rank (higher-rank cardl card2))
(define high-rank-name (list-ref rank-name-parallel (index—of rank-order high-rank)))
(display high-rank-name)

(define flush? (eq? (cadr cardl) (cadr card2)))
(define pair? (eq? (car cardl) (car card2)))

(define straight?
(or
(
(
)
)

(+ (index-of rank-order (car cardl)) 1) (index-of rank-order (car card2)))
(- (index-of rank—order (car cardl)) 1) (index-of rank-order (car card2)))

(cond
(pair? (display " pair"))
(else (display " high"))
)

(cond (straight? (display " straight")))
(cond (flush? (display " flush")))

> (classify-two-cards (pick-two-cards))
((3S) (3 D)): three pair

> (classify-two-cards (pick-two-cards))
((8 C) (A S)): ace high

> (classify-two-cards (pick-two-cards))
{(6 €) (4 S}): six high

> (classify-two-cards (pick-two-cards))
((5S) (A H)): ace high

> (classify-two-cards (pick-two-cards))
((3J H) (5 H)): jack high flush

> (classify-two-cards (pick-two-cards))
((7 H) (5 S)): seven high

> (classify-two-cards (pick-two-cards))
((2 H) (6 S)): six high

> (classify-two-cards (pick-two-cards))
((4 D) (Q S)): queen high

> (classify-two-cards (pick-two-cards))
((4 D) (Q C)): queen high

> (classify-two-cards (pick-two-cards))
((K C) (Q S)): king high straight

> (classify-two-cards (pick-two-cards))
((5 D) (X S)): ten high

> (classify-two-cards (pick-two-cards))
((5 H) (X S)): ten high

> (classify-two-cards (pick-two-cards))
((6 H) (A C)): ace high

> (classify-two-cards (pick-two-cards))
((Q H) (9 H)): queen high flush

> (classify-two-cards (pick-two-cards))
((6 H) (7 C)): seven high straight

> (classify-two-cards (pick-two-cards))
((3 H) (X C)): ten high

> (classify-two-cards (pick-two-cards))
((6 D) (7 H)): seven high straight

> (classify-two-cards (pick-two-cards))
((5 D) (9 H)): nine high

> (classify-two-cards (pick-two-cards))
((3 C) (KD)): king high

> (classify-two-cards (pick-two-cards))
(HZ H) (7 S)): seven high

>

